The documentation and process conversion measures necessary to comply with this revision shall be completed by 9 August 2014. INCH-POUND MIL-PRF-19500/599E W/AMENDMENT 1 9 MAY 2014 SUPERSEDING MIL-PRF-19500/599E 29 January 2014 ### PERFORMANCE SPECIFICATION SEMICONDUCTOR DEVICE, TRANSISTORS, QUAD, FIELD EFFECT, P-CHANNEL, SILICON, TYPE 2N7335, JAN, JANTX, JANTXV, JANS, JANHC, AND JANKC This specification is approved for use by all Departments and Agencies of the Department of Defense. The requirements for acquiring the product described herein shall consist of this specification sheet and MIL-PRF-19500. #### 1. SCOPE - 1.1 <u>Scope</u>. This specification covers the performance requirements for quad P-channel, enhancement-mode, MOSFET, power transistor with avalanche energy ratings (E_{AS} and E_{AR}) and maximum avalanche current (I_{AR}). Four levels of product assurance are provided for each encapsulated device type as specified in MIL–PRF–19500. Two levels of product assurance for each unencapsulated device type die (element evaluation) as specified in MIL–PRF–19500. - 1.2 <u>Physical dimensions</u>. The device package styles are as follows: 14 pin dual-in line package (MO–036AB) in accordance with figure 1 and unencapsulated die in accordance with figure 2 for device types JANHC and JANKC. - 1.3 Maximum ratings. Unless otherwise specified, $T_A = +25$ °C. | P_T $T_C = +25^{\circ}C$ | \ / | V _{GS} | I _{D1} (2) (3)
T _C = +25°C | I _{D2} (2)
T _C = +100°C | Is | Eas | E _{AR} | |----------------------------|----------|-----------------|---|--|------|-----------|-----------------| | (1 die) | (4 die) | | 16 = 425 0 | 16 = +100 C | | | | | <u>W</u> | <u>W</u> | V dc | A dc | A dc | A dc | <u>mJ</u> | <u>mJ</u> | | 1.4 | 2.5 | ±20 | 75 | 50 | 75 | 75 | .14 | | l _{AR} (2) | I _{DМ} (4) | T₃ and T _{STG} | Max $r_{DS(on)}$ (1)
V _{GS} = 10 V dc, $I_D = I_{D2}$ | | R _{θJA1}
maximum | R _{θJA2}
maximum | R _{eJC}
maximum | R _{eJC}
maximum | |---------------------|---------------------|-------------------------|---|-------------------------|------------------------------|------------------------------|-----------------------------|-----------------------------| | | | | T _J = +25°C | T _J = +150°C | (1 die) | (4 die) | (1 die) | (4 die) | | <u>A</u> | A(pk) | <u>°C</u> | Ω | Ω | °C/W | <u>°C/W</u> | °C/W | <u>°C/W</u> | | 75 | -3.0 | –55 to
+150 | 1.4 | 2.5 | 90 | 50 | 17 | | See footnotes on next page. Comments, suggestions, or questions on this document should be addressed to DLA Land and Maritime, ATTN: VAC, P.O. Box 3990, Columbus, OH 43218-3990, or emailed to Semiconductor@dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at https://assist.dla.mil. AMSC N/A FSC 5961 - 1.3 Maximum ratings Continued. - (1) Derate linearly 0.011 W/°C for $T_c > +25$ °C for 1 die. - (2) The following formula derives the maximum theoretical I_D limit. I_D is limited by package and internal wires and may be limited by pin diameter: $T_{IM} T_{C}$ $I_D = \sqrt{\frac{T_{JM} - T_C}{\left(R_{\theta JC}\right) x \left(R_{DS(ON)} \text{ at } T_{JM}\right)}}$ - (3) See figure 3, maximum drain current graph. - (4) $I_{DM} = 4 \times I_{D1}$ as calculated in note 3. - 1.4 Primary electrical characteristics. Unless otherwise specified, T_C = +25°C. | Туре | Min $V_{(BR)DSS}$
$V_{GS} = 0 V$
$I_D = 1 \text{ mA dc}$ | $V_{GS(th)1}$ $V_{DS} \ge V_{GS}$ $I_{D} = 0.25 \text{ mA}$ | $\begin{aligned} &\text{Max I}_{\text{DSS1}} \\ &\text{V}_{\text{GS}} = 0 \text{ V} \\ &\text{V}_{\text{DS}} = 80 \text{ percent} \\ &\text{of rated V}_{\text{DS}} \end{aligned}$ | Max $r_{DS(on)1}$ (1)
$V_{GS} = 10 \text{ V dc}$
$I_{D} = I_{D2}$
$T_{J} = +25^{\circ}\text{C}$ | |--------|--|---|--|--| | 2N7335 | <u>V dc</u>
-100 | V dc
<u>Min</u> <u>Max</u>
–2.0 –4.0 | <u>μA dc</u>
–25 | <u>Ω</u>
1.4 | - (1) Pulsed (see 4.5.1). - 2. APPLICABLE DOCUMENTS - 2.1 <u>General</u>. The documents listed in this section are specified in sections 3 and 4 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3 and 4 of this specification, whether or not they are listed. - 2.2 Government documents. - 2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract. ### DEPARTMENT OF DEFENSE SPECIFICATIONS MIL-PRF-19500 - Semiconductor Devices, General Specification for. #### DEPARTMENT OF DEFENSE STANDARDS MIL-STD-750 - Test Methods for Semiconductor Devices. (Copies of these documents are available online at http://quicksearch.dla.mil.) 2.3 <u>Order of precedence</u>. Unless otherwise noted herein or in the contract, in the event of a conflict between the text of this document and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. | Symbol | Inc | hes | Millim | Notes | | |-----------------|------|------|--------|-------|------| | | Min | Max | Min | Max | | | ВН | .105 | .175 | 2.67 | 4.45 | 4 | | BL | .690 | .770 | 17.53 | 19.56 | | | BW | .280 | .310 | 7.11 | 7.87 | | | BW ₁ | .290 | .325 | 7.37 | 8.26 | 5 | | LH | .025 | .055 | 0.64 | 1.40 | 4, 6 | | LL | .125 | .175 | 3.18 | 4.45 | 4 | | LT | .008 | .012 | 0.203 | 0.305 | | | Symbol | Inc | hes | Millim | Notes | | |-----------------|-----------|------|--------|-------|---| | | Min | Max | Min | Max | | | LS | .100 TP | | 2.54 | 7 | | | LS ₁ | .300 TP | | 7.62 | 7 | | | LW | .015 | .021 | 0.381 | 0.533 | 6 | | LW ₁ | .038 | .060 | 0.97 | 1.52 | | | R | .010 | | 0.25 | | | | S | .030 .095 | | 0.76 | 2.41 | | | α | 0° | 15° | 0° | 15° | 8 | ### NOTES: - 1. Dimensions are in inches. Millimeters are for general information only. - 2. Pin-out: G = gate, S = source, D = drain, and NC = not connected. - 3. Index area: A notch or a pin 1 identification mark shall be located adjacent to pin 1. The manufacturer's identification shall not be used as a pin 1 identification mark. - 4. This dimension shall be measured with the device seated in seating plane gauge JEDEC Outline No. GS-3. - 5. Lead center when α is 0°. BW₁ shall be measured at the centerline of the leads. - 6. Outlines on which the seating plane is coincident with the base plane (LH = 0), terminals lead standoffs are not required, and LW₁ may equal LW along any part of the lead above the seating/base plane. - 7. Leads within .005 inch (0.13 mm) radius of True Position (TP) at gauge plane with maximum material condition and unit installed. Twelve spaces. - 8. α applies to spread leads prior to installation. - 9. Dimensioning and tolerancing in accordance with ASME Y14.5. FIGURE 1. Physical dimensions and configuration (MO-036AB). | Letter | Dimensions | | | | | | Dimer | nsions | | |--------|------------|---------|---------|---------|---|----------------------------|-------|--------|---------| | | Minimum | Maximum | Minimum | Maximum | | Minimum Maximum Minimum Ma | | | Maximum | | Α | | | | | D | .014 | .024 | .36 | .61 | | В | .065 | .075 | 1.65 | 1.91 | Е | .013 | .023 | .33 | .58 | | С | .020 | .030 | .51 | .76 | F | .020 | .030 | .51 | .76 | # NOTES: - 1. Dimensions are in inches. Millimeters are given for general information only. - 2. Unless otherwise specified, tolerance is \pm .005 inch (0.13 mm). - 3. The physical characteristics of the die thickness are as follows: The back metals are chromium, nickel, and silver (Cr, Ni, and Ag). The top metal is aluminum (Al). - 4. The back contact of the die (not shown) is the drain. - 5. Die thickness is .0187 inch (0.475 mm) ±.0005 inch (0.013 mm). - 6. Dimensioning and tolerancing in accordance with ASME Y14.5. FIGURE 2. Physical dimensions of die JANHCA and JANKCA. #### 3. REQUIREMENTS - 3.1 General. The individual item requirements shall be as specified in MIL-PRF-19500 and as modified herein. - 3.2 <u>Qualification</u>. Devices furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturer's list (QML) before contract award (see 4.2 and 6.3). - 3.3 <u>Abbreviations, symbols, and definitions</u>. Abbreviations, symbols, and definitions used herein shall be as specified in MIL-PRF-19500, and as follows: - I_{AS} Rated avalanche current, nonrepetitive. - nC nano Coulomb. - 3.4 <u>Interface and physical dimensions</u>. The interface requirements and physical dimensions shall be as specified in <u>MIL-PRF-19500</u> and on figure 1 (MO-036AB) and figure 2 (unencapsulated die) herein. - 3.4.1 <u>Lead finish</u>. Unless otherwise specified, the lead finish shall be solderable as defined in MIL-STD-750, MIL-PRF-19500, and herein. Where a choice of lead finish is desired, it shall be specified in the acquisition document (see 6.2). - 3.4.2 Pin out. The pin out of the device types shall be as shown on figures 1 and 2. - 3.5 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in 1.3, 1.4, and table I herein. - 3.5.1 Electrostatic discharge protection. The devices covered by this specification require electrostatic protection. - 3.5.2 <u>Handling</u>. MOS devices must be handled with certain precautions to avoid damage due to the accumulation of electrostatic charge. The following handling practices shall be followed: - a. Devices shall be handled on benches with conductive handling devices. - b. Ground test equipment, tools, and personnel handling devices. - c. Do not handle devices by the leads. - Store devices in conductive foam or carriers. - e. Avoid use of plastic, rubber, or silk in MOS areas. - f. Maintain relative humidity above 50 percent if practical. - g. Care shall be exercised, during test and troubleshooting, to apply not more than maximum rated voltage to any lead. - h. Gate must be terminated to source, $R \le 100 \text{ k}\Omega$, whenever bias voltage is to be applied drain to source. - 3.6 Electrical test requirements. The electrical test requirements shall be as specified in table I. - 3.7 Marking. Marking shall be in accordance with MIL-PRF-19500. - 3.8 <u>Workmanship</u>. Semiconductor devices shall be processed in such a manner as to be uniform in quality and shall be free from other defects that will affect life, serviceability, or appearance. - 4. VERIFICATION - 4.1 Classification of inspections. The inspection requirements specified herein are classified as follows: - a. Qualification inspection (see 4.2). - b. Screening (see 4.3). - c. Conformance inspection (see 4.4 and tables I, II and III). - 4.2 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-19500, and as specified herein. - 4.2.1 <u>JANHC and JANKC devices</u>. Qualification for JANHC and JANKC devices shall be as specified in <u>MIL-PRF-19500</u>. - 4.2.2 <u>Group E qualification</u>. Group E inspection shall be performed for qualification or re-qualification only. In case qualification was awarded to a prior revision of the specification that did not request the performance of table III tests, the tests specified in table III herein shall be performed by the first inspection lot of this revision to maintain qualification. ## 4.3 Screening. 4.3.1 <u>Screening of packaged devices (quality levels JANS, JANTX and JANTXV only)</u>. Screening of packaged devices shall be in accordance with table E–IV of MIL–PRF–19500 and as specified herein. The following measurements shall be made in accordance with table I herein. Devices that exceed the limits of table I herein shall not be acceptable. | Screen | Measurem | nent (1) (2) | | | |-----------------------------------|--|---|--|--| | (see table E-IV of MIL-PRF-19500) | JANS level | JANTX and JANTXV levels | | | | (3) | Gate stress test (see 4.3.1.1) | Gate stress test (see 4.3.1.1) | | | | (3) (4) | Method 3470 of MIL-STD-750, (see 4.3.1.2) optional | Method 3470 of MIL-STD-750, (see 4.3.1.2) optional | | | | 3c (3) | Method 3161 of MIL-STD-750, (see 4.3.1.3) | Method 3161 of MIL-STD-750, (see 4.3.1.3) | | | | 9 | I _{GSSF1} , I _{GSSR1} , I _{DSS1} , see table I, subgroup 2 herein | See table I, subgroup 2 herein | | | | 10 | Method 1042 of MIL-STD-750, test condition B | Method 1042 of MIL-STD-750, test condition B | | | | 11 | I _{GSSF1} , I _{GSSR1} , I _{DSS1} , r _{DS(on)1} , V _{GS(th)1} Subgroup 2 of table I herein; ΔI _{GSSF1} = ±20 nA dc or ±100 percent of initial value, whichever is greater. ΔI _{GSSR1} = ±20 nA dc or ±100 percent of initial value, whichever is greater. ΔI _{DSS1} = ±25 μA dc or ±100 percent of initial value, whichever is greater | I _{GSSF1} , I _{GSSR1} , I _{DSS1} , r _{DS(on)1} ,
V _{GS(th)1} , table I, subgroup 2 herein | | | | 12 | Method 1042 of MIL-STD-750, test condition A, t = 240 hours | Method 1042 of MIL-STD-750, test condition A | | | | 13 | Subgroups 2 and 3 of table I herein; $\Delta l_{\text{GSSF1}} = \pm 20 \text{ nA dc or } \pm 100 \text{ percent of initial value, whichever is greater.}$ $\Delta l_{\text{GSSR1}} = \pm 20 \text{ nA dc or } \pm 100 \text{ percent of initial value, whichever is greater.}$ $\Delta l_{\text{DSS1}} = \pm 25 \mu \text{A dc or } \pm 100 \text{ percent of initial value, whichever is greater.}$ $\Delta l_{\text{DSS1}} = \pm 20 \text{ percent of initial value}$ $\Delta l_{\text{CS(th)1}} = \pm 20 \text{ percent of initial value}$ | Subgroup 2 of table I herein; $\Delta l_{\text{GSSF1}} = \pm 20 \text{ nA dc or } \pm 100 \text{ percent of initial value, whichever is greater.}$ $\Delta l_{\text{GSSR1}} = \pm 20 \text{ nA dc or } \pm 100 \text{ percent of initial value, whichever is greater.}$ $\Delta l_{\text{DSS1}} = \pm 25 \mu \text{A dc or } \pm 100 \text{ percent of initial value, whichever is greater.}$ $\Delta l_{\text{DSS1}} = \pm 20 \text{ percent of initial value}$ $\Delta l_{\text{CS(th)1}} = \pm 20 \text{ percent of initial value}$ | | | - (1) At the end of the test program, I_{GSSF1}, I_{GSSR1} and I_{DSS1} are measured. - (2) An out-of-family program to characterize I_{GSSF1}, I_{GSSR1}, I_{DSS1} and V_{GS(th)1} shall be invoked. - (3) Shall be performed anytime before screen 9. - (4) This test method in no way implies a repetitive single pulse avalanche energy rating. This test need not be performed in group A when performed as a screen. - 4.3.1.1 Gate stress test. Apply $V_{GS} = +30 \text{ V}$ minimum for $t = 250 \mu \text{s}$ minimum. - 4.3.1.2 <u>Single pulse avalanche energy (E_{AS})</u>. The single pulse avalanche energy capability shall be performed in accordance with method 3470 of MIL–STD–750. The following details shall apply: - a. Peak current (I_{AS}) I_{D1}. - b. Peak gate voltage (V_{GS}) -10 V. - c. Gate to source resistor (R_{GS}) $25 \le R_{GS} \le 200\Omega$. - d. Initial case temperature +25°C +10°C, -5°C. - e. Inductance $\left[\frac{2E_{AS}}{\left(I_{D1}\right)^{2}}\right]\left[\frac{\left(V_{BR}-V_{DD}\right)}{V_{BR}}\right]$ mH minimum - f. Number of pulses to be applied 1 pulse minimum. - g. Supply voltage (V_{DD}) –25 V minimum. - 4.3.1.3 <u>Thermal impedance ($Z_{\theta JC}$ measurements)</u>. The thermal impedance measurements shall be performed in accordance with method 3161 of <u>MIL-STD-750</u> using the guidelines in that method for determining I_M , I_H , t_H , t_{SW} , (and V_H where appropriate). Measurement delay time (t_{MD}) = 70 μ s maximum. (See figure 4 herein for thermal response curves.) See table II, group E, subgroup 4 herein. - 4.3.2 <u>Screening of unencapsulated die (JANHC and JANKC)</u>. Screening of JANHC and JANKC unencapsulated die shall be in accordance with appendix G of <u>MIL-PRF-19500</u>. The burn-in duration for JANKC level shall follow the JANS requirements; the JANHC level shall follow the JANTX requirements of table E–IV of <u>MIL-PRF-19500</u>. As a minimum, die shall be 100 percent probed in accordance with group A. - 4.4 <u>Conformance inspection</u>. Conformance inspection shall be in accordance with MIL-PRF-19500, and as specified herein. Alternate flow is allowed for conformance inspection in accordance with MIL-PRF-19500. - 4.4.1 <u>Group A inspection</u>. Group A inspection shall be conducted in accordance with table E–V of <u>MIL-PRF-19500</u>, and table I herein. Electrical measurements (end-points) shall be in accordance with table I, subgroup 2 herein. Delta requirements shall be in accordance with the applicable steps of table II herein. - 4.4.2 <u>Group B inspection</u>. Group B inspection shall be conducted in accordance with the conditions specified for subgroup testing in table E–VIA (JANS) and table E–VIB (JAN, JANTX, and JANTXV) of MIL–PRF–19500 and herein. Electrical measurements (end-points) shall be in accordance with table I, subgroup 2 herein. Delta requirements shall be in accordance with the applicable steps of table II herein. ## 4.4.2.1 Quality level JANS (table E-VIA of MIL-PRF-19500). | <u>Subgroup</u> | <u>Method</u> | <u>Conditions</u> | |-----------------|---------------|--| | В3 | 1051 | Condition G. | | B5 | 1042 | Condition B (gate stress); $T_A = +175^{\circ}C$, $t = 24$ hours. | | B5 | 1042 | Condition A (reverse bias); T_A = +175°C, t = 120 hours. Read and record $V_{BR(DSS)}$ (pre and post) at I_D = 1 mA. | | В6 | 3161 | See 4.5.2. | # 4.4.2.2 Quality levels JAN, JANTX, and JANTXV (table E-VIB of MIL-PRF-19500). | Subgroup | Method | <u>Conditions</u> | |----------|--------|---| | B2 | 1051 | Condition G. | | В3 | 1042 | Condition D, the heating cycle shall be 1 minute minimum. | 4.4.3 <u>Group C inspection</u>. Group C inspection shall be conducted in accordance with the conditions specified for subgroup testing in table E–VII of MIL–PRF–19500 and as follows herein. Electrical measurements (end-points) shall be in accordance with table I, subgroup 2 herein. Delta requirements shall be in accordance with the applicable steps of table II herein. | <u>Subgroup</u> | <u>Method</u> | Conditions | |-----------------|---------------|---| | C2 | 2036 | Condition E. The sampling plan applies to the number of leads tested. A minimum of three devices shall be tested. | | C5 | 3161 | See 4.5.2. | | C6 | 1042 | Condition D, the heating cycle shall be 1 minute minimum. | - 4.4.4 <u>Group E inspection (except JANHC and JANKC)</u>. Group E inspection shall be conducted in accordance with the conditions specified for subgroup testing in table E–IX of MIL–PRF–19500 and as specified in table II herein. Electrical measurements (end-points) shall be in accordance with table I, subgroup 2 herein. Delta requirements shall be in accordance with the applicable steps of table II herein. - 4.5 Method of inspection. Methods of inspection shall be as specified in the appropriate tables and as follows. - 4.5.1 <u>Pulse response measurements</u>. The conditions for pulse response measurement shall be as specified in section 4 of MIL-STD-750. - 4.5.2 <u>Thermal resistance</u>. Thermal resistance measurements shall be performed in accordance with method 3161 of <u>MIL-STD-750</u>. R_{0JA1} maximum = 90°C/W, for each die. | | a. | I _M measuring current | 10 mA. | |--|----|----------------------------------|--------| |--|----|----------------------------------|--------| b. I_H drain heating current 0.15 A minimum. t_H heating time Steady-state (see method 3161 of MIL-STD-750 for definition). d. V_H drain-source heating voltage 15 V minimum. e. t_{MD} measurement time delay 30 to 60 μs. f. t_{sw} sample window time 10 μs maximum. TABLE I. Group A inspection. | Inspection 1/ | | MIL-STD-750 | Symbol | Limit | | Unit | |---|--------|---|----------------------|-------|-------|-------| | mopeonom <u>m</u> | Method | Conditions | Symbol | Max | Min | Offic | | Subgroup 1 Visual and mechanical inspection | 2071 | | | | | | | Subgroup 2 | | | | | | | | Thermal impedance 2/ | 3161 | See 4.3.1.3 | Z _{eJC} | | 10 | °C/W | | Breakdown voltage,
drain-to-source | 3407 | Bias condition C,
$V_{GS} = 0V$, $I_D = -1$ mA dc | V _{(BR)DSS} | -100 | | V dc | | Gate-to-source voltage (threshold) | 3403 | $V_{DS} \ge V_{GS}$,
$I_D = -0.25 \text{ mA}$ | V _{GS(th)1} | -2.0 | -4.0 | V dc | | Gate current (forward) | 3411 | Bias condition C, $V_{GS} = +20V dc$, $V_{DS} = 0 V dc$ | I _{GSSF1} | | ±100 | nA dc | | Gate current (reverse) | 3411 | Bias condition C, $V_{GS} = -20 \text{ V dc}$, $V_{DS} = 0 \text{ V dc}$ | I _{GSSR1} | | ±100 | nA dc | | Drain current | 3413 | Bias condition C, $V_{GS} = 0 \text{ V dc}$, $V_{DS} = 80 \text{ percent of rated } V_{DS}$ | I _{DSS1} | | -25 | μA dc | | Static drain to source on-state resistance | 3421 | Bias condition A, $V_{GS} = -10 \text{ V dc}$, $I_D = \text{rated } I_{D2} \text{ (see 1.3)}$, pulsed (see 4.5.1) | r _{DS(on)1} | | 1.4 | Ω | | Forward voltage | 4011 | $V_{GS} = 0 \text{ V dc}, I_D = \text{rated } I_{D1},$ pulsed (see 4.5.1) | V _{SD} | | 5.5 | V | | Subgroup 3 | | | | | | | | High temperature operation: | | $T_{C} = T_{J} = +125^{\circ}C$ | | | | | | Gate current | 3411 | Bias condition C, $V_{DS} = 0 \text{ V dc}$, $V_{GS} = +20 \text{ V dc}$ and -20 V dc | I _{GSS2} | | ±200 | nA dc | | Drain current | 3413 | Bias condition C, $V_{GS} = 0 \text{ V dc}$, $V_{DS} = 80 \text{ percent of rated } V_{DS}$ | I _{DSS2} | | -0.25 | mA dc | | Static drain-to-source on-state resistance | 3421 | Bias condition A, $V_{GS} = -10 \text{ V dc}$, $I_D = \text{rated } I_{D2}$, pulsed (see 4.5.1) | r _{DS(on)2} | | 2.3 | Ω | See footnote at end of table. TABLE I. Group A inspection - Continued. | Inspection 1/ | MIL-STD-750 Symbol | | Lir | Limit | | | |---|--------------------|---|----------------------|-------|------|------| | mopodien <u>i</u> | Method | Conditions | Symbol | Max | Min | Unit | | Subgroup 3 - Continued | | | | | | | | Gate-to-source voltage (threshold) | 3403 | 3 $V_{DS} \ge V_{GS}$, $I_{D} = -0.25 \text{ mA}$ $V_{GS(th)2}$ -1 | | -1.0 | | V dc | | Low temperature operation: | | $T_C = T_J = -55^{\circ}C$ | | | | | | Gate-to-source voltage (threshold) | 3403 | $V_{DS} \ge V_{GS}$, $I_D = -0.25$ mA | V _{GS(th)3} | | -5.0 | V dc | | Subgroup 4 | | | | | | | | Switching time test | 3472 | I_D = rated I_{D1} ; V_{GS} = -10 V dc;
R_G = 7.5 Ω ;
V_{DD} = 50 percent of $V_{(BR)DSS}$ | | | | | | Turn-on delay time | | | t _{d(on)} | | 30 | ns | | Rise time | | | t _r | | 60 | ns | | Turn-off delay time | | | t _{d(off)} | | 70 | ns | | Fall time | | | t _f | | 80 | ns | | Subgroup 5 | | | | | | | | Single pulse unclamped inductive switching 3/ | 3470 | See 4.3.1.2, n = 116, c = 0 | E _{AS} | | | | | Electrical measurements | | See subgroup 2 of this table | | | | | | Safe operating area test for power MOSFETs | 3474 | V_{DS} = 80 percent of rated $V_{(BR)DSS}$, I_D = 0.5 A, t_p = 10 ms, (see figure 5) | | | | | | Electrical measurements | | See subgroup 2 of this table | | | | | | Subgroup 6 | | | | | | | | Not applicable | | | | | | | See footnote at end of table. TABLE I. Group A inspection - Continued. | Inspection 1/ | | MIL-STD-750 od Conditions Symbol | | Limit | | Unit | |-----------------------|--------|---|-----------------|-------|-----|------| | opecuen <u></u> | Method | | | Max | Min | | | Subgroup 7 | | | | | | | | Gate charge | 3471 | Condition B | | | | | | On-state gate charge | | | $Q_{g(on)}$ | | 15 | nC | | Gate to source charge | | | Q_{gs} | | 7.0 | nC | | Gate to drain charge | | | Q_{gd} | | 8.0 | nC | | Reverse recovery time | 3473 | Condition A, $d_i/d_t \le -100 \text{ A/}\mu\text{s}$, $V_{DD} \le -30 \text{ V}$, $I_D = I_{D1}$, (see 1.3) | t _{rr} | | 200 | ns | - 1/ For sampling plan, see MIL-PRF-19500. - Z/ This test is required for the following end-point measurement only (not intended for screen 9, 11, or 13): JANS, table E–VIA of MIL–PRF–19500, group B, subgroups 3 and 4; JAN, JANTX, and JANTXV, table E–VIB of MIL–PRF–19500, group B, subgroups 2 and 3; and table E–VII of MIL–PRF–19500, group C, subgroup 6, and table E–IX of MIL–PRF–19500, group E, subgroups 1 and 2. - 3/ This test need not be performed in group A if performed in screening. TABLE II. Groups A, B and C delta measurements. 1/ | Ston | Inspection | | MIL-STD-750 | Symbol | Limits | Unit | |------|-----------------------------------|--------|---|----------------------|--|-------| | Step | Inspection | Method | Conditions | Symbol | Limits | Offic | | 1 | Breakdown voltage drain to source | 3407 | $V_{GS} = 0 \text{ V dc}, I_D = -1 \text{ mA dc}$ test condition C | $\Delta V_{(BR)DSS}$ | ±10 percent | | | 2 | Drain current | 3413 | Bias condition C, $V_{GS} = 0 \text{ V dc}$, $V_{DS} = 80$ percent of rated V_{DS} ; | Δl _{DSS1} | $ΔI_{DSS1} = \pm 25 \mu A dc$ or ± 100 percent of initial value, whichever is greater. | | ^{1/} The delta measurements for group B, product assurance level JANS shall be as follows: In addition to the measurements specified for subgroup 5 of table E–VIA of MIL–PRF–19500, the measurements of steps 1 and 2 shall also be taken. TABLE III. Group E inspection (all quality levels) for qualification or re-qualification only. 1/ | Inspection | MIL-STD-750 | | Sample plan | |--|-------------|---|---------------------| | оросис | Method | Conditions | Campio pian | | Subgroup 1 Temperature cycling (air to air) | 1051 | Condition G, 500 cycles. | 45 devices
c = 0 | | Hermetic seal
Fine leak
Gross leak | 1071 | | | | Electrical measurements | | See table I, subgroup 2. | | | Subgroup 2 2/ | | | 45 devices
c = 0 | | Steady-state reverse bias
Electrical measurements | 1042 | Condition A, 1,000 hours.
See table I, subgroup 2. | 0 - 0 | | Steady-state gate bias
Electrical measurements | 1042 | Condition B, 1,000 hours
See table I, subgroup 2. | | | Subgroup 4 | | | Sample size N/A | | Thermal impedance curves | | See MIL-PRF-19500. | | | Subgroup 5 | | | | | Not applicable | | | | | Subgroup 6 | | | 11 devices | | Electrostatic discharge sensitivity | 1020 | | | | Subgroup 11 | | | 22 devices
c = 0 | | Test procedure for measuring dv/dt during reverse recovery of power MOSFET transistors | 3476 | | C = 0 | ^{1/} JANHC and JANKC devices are qualified in accordance with appendix G of MIL-PRF-19500. ^{2/} A separate sample for each test may be selected. FIGURE 3. Maximum drain current vs case temperature graph. t_1 , RECTANGLE PULSE DURATION (SECONDS) ## NOTES: - 1. The curves are from bottom to top are: Single pulse, D = 0.01, D = 0.02, D = 0.05, D = 0.1, and D = 0.5. - 2. Pulse duration magnitude = P_{DM} - 3. Duty factor $D = t_1 / t_2$. - 4. Peak $T_J = P_{DM} \times Z_{thJA} + T_C$. FIGURE 4. Normalized transient thermal impedance. FIGURE 5. Maximum safe operating area. #### 5. PACKAGING 5.1 <u>Packaging</u>. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department or Defense Agency, or within the Military Department's System Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity. #### 6. NOTES (This section contains information of a general or explanatory nature that may be helpful, but is not mandatory. The notes specified in MIL-PRF-19500 are applicable to this specification.) - 6.1 <u>Intended use</u>. Semiconductors conforming to this specification are intended for original equipment design applications and logistic support of existing equipment. - 6.2 Acquisition requirements. Acquisition documents should specify the following: - a. Title, number, and date of this specification. - b. Packaging requirements (see 5.1). - c. Lead finish (see 3.4.1). - d. The complete Part or Identifying Number (PIN), see title and section 1. - e. For die acquisition, the JANHC or JANKC letter version shall be specified (see figure 2.) - 6.3 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers' List (QML-19500) whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DLA Land and Maritime, ATTN: VQE, P.O. Box 3990, Columbus, OH 43216-5000. An online listing of products qualified to this specification may be found in the Qualified Products Database (QPD) at https://assist.dla.mil. 6.4 <u>Substitution information</u>. Devices covered by this specification are substitutable for the manufacturer's and user's Part or Identifying Number (PIN). This information in no way implies that manufacturer's PIN's are suitable for the military PIN. | Military PIN | Manufacturers'
CAGE code | Manufacturers' and users' PIN | |--------------|-----------------------------|-------------------------------| | 2N7335 | 59993 | IRFG9110 | 6.5 <u>Suppliers of JANHC and JANKC die</u>. The qualified JANHC and JANKC suppliers with the applicable letter version (example JANHC2N7335) will be identified on the QML. | JANHC and JANKC ordering information | | | | | | |--|-----------------------------|--|--|--|--| | PIN | PIN Manufacturer CAGE 59993 | | | | | | 2N7335 JANHC2N7335 (1) JANKC2N7335 (1) | | | | | | (1) The JANHC2N7335 and the JANKC2N7335 die were never qualified for listing on QML-19500. Preparing activity: (Project 5961-2014-089) DLA - CC 6.6 <u>Changes from previous issue</u>. The margins of this specification are marked with vertical lines to indicate where changes from the previous issue were made. This was done as a convenience only and the Government assumes no liability whatsoever for any inaccuracies in these notations. Bidders and contractors are cautioned to evaluate the requirements of this document based on the entire content irrespective of the marginal notations and relationship to the previous issue. Custodians: Army - CR Navy - EC Air Force - 85 NASA - NA DLA - CC Review activities: Army - SM Navy – AS, MC Air Force - 19, 99 NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at https://assist.dla.mil.